

BLMD-10C6-1P-S14 Low Voltage Brushless DC Motor Driver

Product Datasheet

BLMD-10C6-1P-S14 is a low voltage, three phase, six step, full wave and hall sensor Brushless DC Motor Driver. This driver is suitable for 18 to 60VDC power supply. Rated output current of the three phases is 10ADC.

- Three Phase MOSFETs H-Bridge (20kHz PWM)
- Hall Sensor Electrical Phasing 120°/240°
- Reference Voltage for Hall Sensors--Vhall
- Speed Frequency Generator--FG
- Forward/Reverse Direction--F/R
- Run Enable/Disable--En
- Open Loop Stepless Speed Control--ADJ
- System Malfunction Fault Output--FLT
- Dynamic Braking--BRK (Conditional)
- Over Current Limit/Undervoltage Lockout--OCUV

Brushless Motor Driver Rated Output: 10ADC

Current Limit Max Input: 60VDC

One Phase Protection

S: Sensor
SL: Sensorless

Sub-series

Beijing Eletechnic Ltd.



Please read Safety Warning below carefully before installing and operating this driver!

- This product should be installed and serviced by a qualified technician, electrician, or electrical maintenance person familiar with its operation and the hazards involved.
- Be sure to eliminate body static electricity when operation.
- To connect or disconnect J3 or J4 when power on is FORBIDDEN. J3 or J4 phase missing is FORBIDDEN.
- Do not touch the PCB board, and/or other circuits connected to it, when power on.
 Eye protection must be worn and insulated tools must be used when working under power.
- All output and input terminals are NOT isolated.

(The Absolute Maximum Ratings are those values beyond which the safety of the driver cannot be guaranteed)

Parameter	Symbol	Value	Unit
Power Supply Voltage	+VM	60	VDC
Peak Output Current	Ia, Ib, Ic	15 peak (Approximate)	ADC
Rated Output Current	Ia, Ib, Ic	10	ADC
Max Controllable Motor Speed	One Magnetic Pole-pair Rotor	40000	rpm
Hall Reference Voltage Output Current	IHall	(20)	mA
Digital Inputs Voltage	Ha, Hb, Hc, F/R, EN, BRK	-0.3 to 6.5	V
FG, FLT, OCUV Output Voltage	FG, FLT, OCUV	-0.3 to 6.5	V
FG, FLT, OCUV Output Current	Ifg, Iflt, Iocuv	5 (Sink Only)	mA
Speed Control Input Voltage	ADJ 🔈	-0.3 to 6.5	V
CFB, TFB Output Current	Ісғв, Ітғв	5 (Source and Sink)	mA
Max Temperature of the Sink	Ts	85	С
Operating Ambient Temperature Range	Ta	-20 to +85	C

Electrical Characteristics

(J1=24VDC, Ta=20C, unless otherwise noted)

(b) 211/20, full 2001, different foliation)										
Parameter	Symbol	Min	Typical	Max	Unit					
J1Power Supply										
Supply Voltage	+VM	(18/))	-	60	VDC					
Quiescent Supply Current	IQ		60	80	mA					
0 0.23 0.23										
VhallReference Voltag	e for Hall Sens	sors								
Output Volt	Vhall	-	5.2	_	VDC					
Output Current	Ihall	-	-	20	mA					
•										
Ha, Hb, HcHall Digita	l Inputs									
High Threshold Volt	Vih	3.0	2.2	-	V					
Low Threshold Volt	VIL	-	1.7	0.8	V					
High State Current	IIH	-	0	-	mA					
Low State Current	IıL	-	-5	-	mA					
	1		1	1						
FGSpeed Frequency Generator Digital Output										
High State Volt	Vон	-	5.2	-	V					
Low State Volt	Vol	-	0.8	-	V					
Source Current	Іон	-1	0	-	mA					

Sink Current

IOL

mA

F/R, EN, BRK--Digital Inputs

High Threshold Volt	Vih	3.0	2.2	-	V
Low Threshold Volt	VIL	-	1.7	0.8	V
High State Current	Iтн	-75	-	-10	uA
Low State Current	IIL	-300	-	-10	uA

ADJ--Open Loop Stepless Speed Control Analog Input

		0 1			
100% PWM Vup		-	4.2	4.5	V
0% PWM	Vdn	1.2	1.5		V

FLT, OCUV--Digital Output

				- A - V	
High State Volt	Voh	-	3 🔊 (()) -	V
Low State Volt	Vol	-	1	<u> </u>	V
Source Current	Іон	-1	0	-	mA
Sink Current	Iol	-		5	mA

Current Limit

Peak Current	Ia, Ib, Ic	-	15	-	ADC
Average Current	Ia, Ib, Ic	- ^ (0	10 (Approx.)	•	ADC

Undervoltage Lockout

8				
Supply Voltage	UV	18	-	VAC

Junction Table

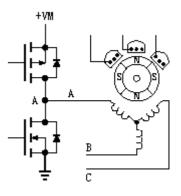
Junction	Pin	Type	Function			
J1	+VM	Power Supply	DC Power Supply, Positive Line			
J1	GND	-	Power Supply GND, Negative Line			
	FG	Digital Output	Speed Frequency Generator, TTL Compatible			
	F/R	Digital Input	Forward/Reverse Direction, TTL Compatible			
	EN	Digital Input	Run Enable/Disenable, TTL Compatible			
	UP	Voltage Divider	Potentiometer Up Pin			
J2	ADJ	Analog Input	Open Loop Stepless Speed Control			
J∠	DN	Voltage Divider	Potentiometer Down Pin			
	FLT	Digital Output	System Malfunction Output, TTL Compatible			
	BRK	Digital Input	Dynamic Braking, TTL Compatible			
	GND	•	Signals GND			
	OCUV	Digital Output	Over Current Limit/Undervoltage Lockout			
	A	Driver Output	A Phase Winding Driver			
Ј3	В	Driver Output	B Phase Winding Driver			
	С	Driver Output	C Phase Winding Driver			

Beijing Eletechnic Ltd.

	GND	-	Hall Sensors GND		
	Ha Digital Input		A Hall Sensor, TTL Compatible		
J4	Hb	Digital Input	B Hall Sensor, TTL Compatible		
	Нс	Digital Input	C Hall Sensor, TTL Compatible		
	Vhall	Reference Output	Reference Voltage for Hall Sensors		

Main Functions Description

J1--Power Supply:

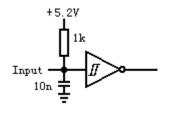

A stabilized power supply or battery is recommended. The Max Supply Voltage must be less than 60VDC. Please see the "Absolute Maximum Ratings" for proper operation.

J3--A, B, C Three Phase Winding Driver:

The driver output circuit is shown in right figure. Three Phase, Full wave, H-Bridge could drive either Y or Delta winding motor. Please see "Commutation Truth Table" for details.

The use of 20kHz pulse width modulation at the three bottom MOSFETs provides an energy efficient method of controlling the motor speed by varying the average voltage applied to each stator winding during the commutation sequence.

To connect or disconnect J3 when power on is FORBIDDEN! J3 phase missing is FORBIDDEN!


Vhall--Reference Voltage for Hall Sensors:

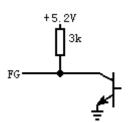
This reference power could output only 20mA for hall sensors. It is FORBIDDEN to supply any other loads!

Ha, Hb, Hc--Hall Digital Inputs:

TTL compatible. The internal circuit is shown in right figure. Please see "Commutation Truth Table" for details.

The hall sensor electrical phasing must be 120°/240°, 60°/300° is FORBIDDEN. And Ha, Hb, Hc signals must be connected correctly according to A, B, C windings. Otherwise the driver and motor may be damaged!

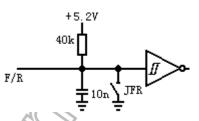
To connect or disconnect J4 when power on is FORBIDDEN! J4 phase missing is FORBIDDEN!


FG--Speed Frequency Generator Digital Output:

TTL compatible. Open collector output. The internal circuit is shown in right figure.

Its frequency is directly proportional to the motor speed. Pulse duty cycle is about 50%. The output waveforms are shown in left figure.

FG (Hz) = Speed (rpm) * N * 3 / 60. N means the number of magnetic pole-pairs (NOT POLES) of the rotor.

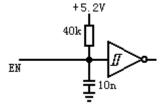


Beijing Eletechnic Ltd.

F/R--Forward/Reverse Direction Digital Input:

TTL compatible. The internal circuit is shown in right figure. Please see "Commutation Truth Table" for details.

When F/R signal is high or float, the direction of motor rotation is forward. When F/R is low, it is reverse. The running direction also depends on the structure of BLDC motor.


JFR switch could change the direction on board. But when using J2-F/R pin as signal source, please set JFR OPEN. Otherwise the J2-F/R signal will be invalid.

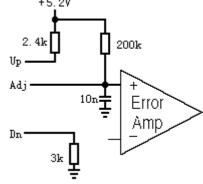
Reversing when running is FORBIDDEN! That means the motor must be disable (En=0) and speed down to quiescence first, then give F/R reverse signal, then enable (En=1) and speed up.

En--Run Enable/Disenable Digital Input:

TTL compatible. The internal circuit is shown in right figure. Please see "Commutation Truth Table" for details.

A logic high or float at En pin causes the motor to run, while a low causes motor to coast and ABC three phases output Z state.

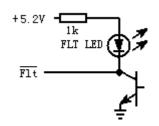
ADJ--Open Loop Stepless Speed Control Analog Input:


Analog signal. The internal circuit is shown in right figure. There are three ways to control speed: (Please see "Application Circuit Examples" for details)

First, connect the top side and bottom side of a 10kOhm potentiometer to the UP pin and DN pin of J2 separately. And connect the middle pin of the potentiometer to ADJ pin.

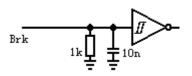
Second, using an operational amplifier (or D/A). Connect the output of operational amplifier (or D/A) directly to ADJ pin.

Third, connect a filtered pulse width modulation signal directly to ADJ pin. The external filter RC>2ms and f>10kHz is recommended.


When the input voltage of ADJ is lower than 1.5V, the output PWM of three phases is 0%. When the input voltage of ADJ is higher than 4.2V, the output PWM of three phases is 100%.

FLT--System Malfunction Digital Output:

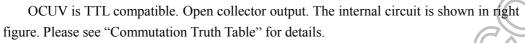
TTL compatible. Open collector output. The internal circuit is shown in right figure. Please see "Commutation Truth Table" for details.


A logic high means the motor works normally. A logic low means there are something wrong and causes the FLT Led on and ABC three phases output Z state.

BRK--Dynamic Braking Digital Input (Conditional):

TTL compatible. The internal circuit is shown in right figure.

Using this function need high qualify engineer and additional external circuits. Incorrect operation will cause over voltage, over current and other serious results. The default setting of this function is DISABLED. That means any operation on this pin is invalid. Please contact us for technical supports if you want this function, and ask for additional Appendix Datasheets.

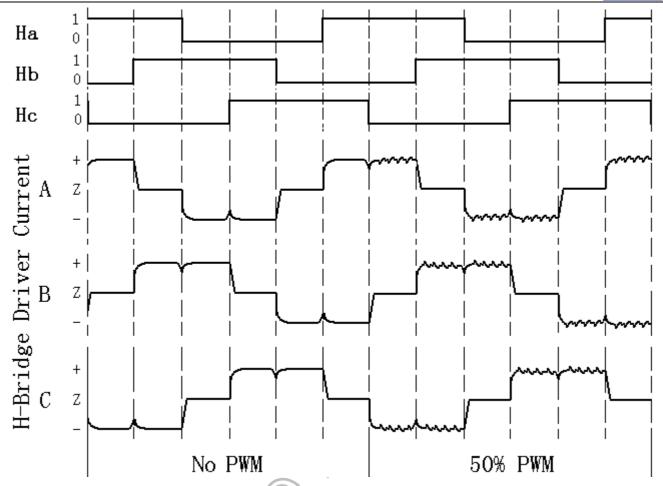

Beijing Eletechnic Ltd.

Over Current Limit, Undervoltage Lockout and OCUV Digital Output:

An internal current limit circuit is inside this driver in order to protect J3 H-Bridges. 15ADC peak current limitation value is set, and average current is about 10ADC. When over current is active, OCUV Led is on.

ocuv -

An undervoltage lockout has been incorporated to prevent damage to the IC and the MOSFETs. When power supply +VM<18VDC, driver turns off, and auto-restart when voltage goes up.


A logic high means the motor works normally. A logic low means over current OR undervoltage occurs, and causes the OCUV Led on and ABC three phases output Z state.

Commutation Truth Table

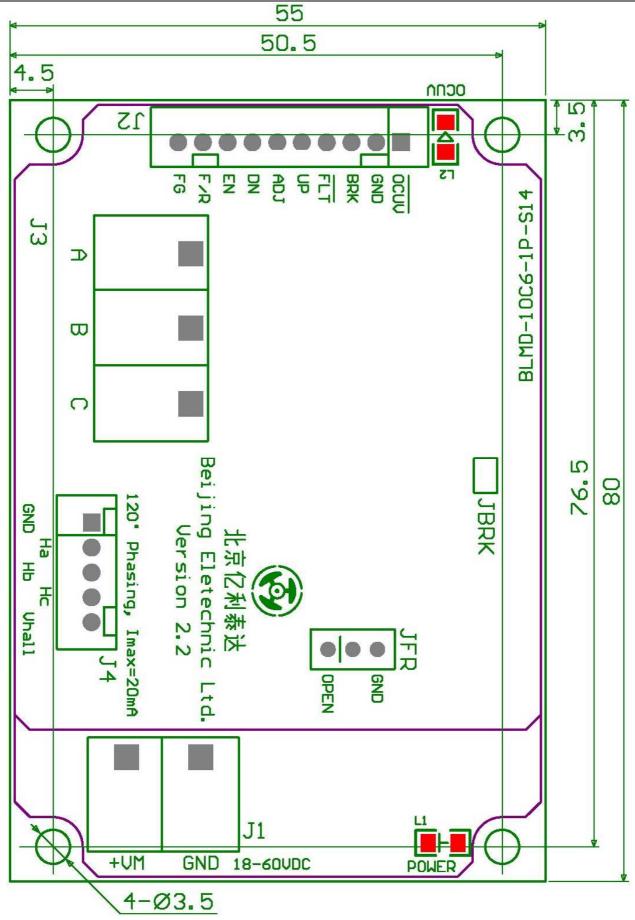
Н	Hall Inputs		Control Inputs		Over	Over	H-Bridge Driver)river	Signal Outputs		
На	Hb	Нс	F/R	EN	BRK	Temp	Crnt	A	В	C	FLT	OCUV
X	X	X	X	X	X	Act	X	Z	Z	Z	1	0
X	X	X	X	X	X	X	Act	Z	Z	Z	1	0
1	1	1	X	X	0	Inact	Inact	Z	Z	Z	0	1
0	0	0	X	X	0	Inact	Inact	Z	Z	Z	0	1
1	1	1	X	X	1 4	Inact	Inact	0	0	0	0	1
0	0	0	X	X	1	Inact	Inact	0	0	0	0	1
			X	0	1((Inact	Inact	0	0	0	0	1
			X	0 /	0	Inact	Inact	Z	Z	Z	0	1
Six Val	id Comb	inations	X	1	//1	Inact	Inact	0	0	0	1	1
(Figure Below)			//					Norma	ıl			
		1/0	1	0	Inact	Inact	Co	mmuta	tion	1	1	
			6		>			(Fig	gure Be	elow)		

Beijing Eletechnic Ltd.

Normal Commutation Waveforms, F/R=1

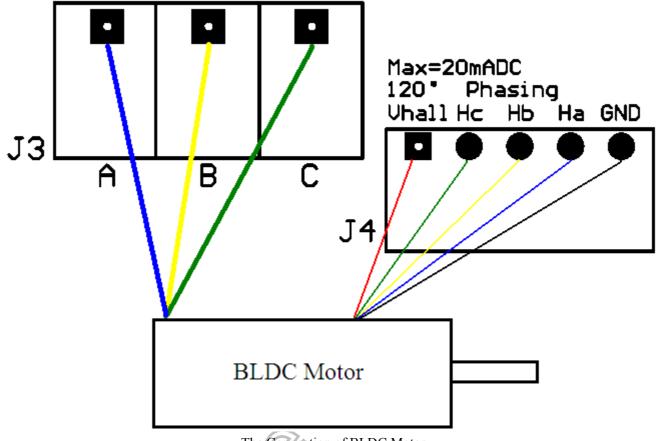
Note: "1"=High, "0"=Low, "X"=Don't care, "Z"=High impedance, "+"= Positive current, "-"=Negative current

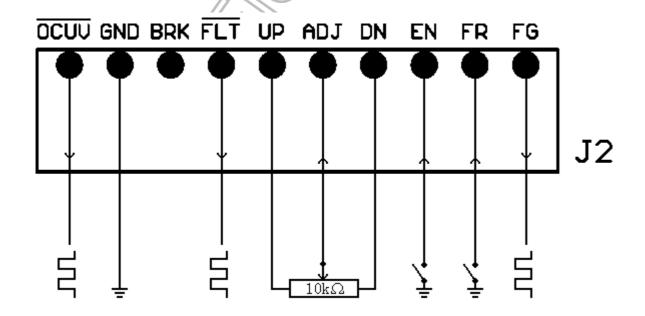
Driver Dimension and Connection Diagram (Unit: mm)


The driver dimension is 80 (L) X 55 (W) X 45 (H). The approximate weight of the driver is 135g (including intrinsic sink, not including lines).

The size of the sink can be custom-ordered according to the motor power, heating and cooling of the application.

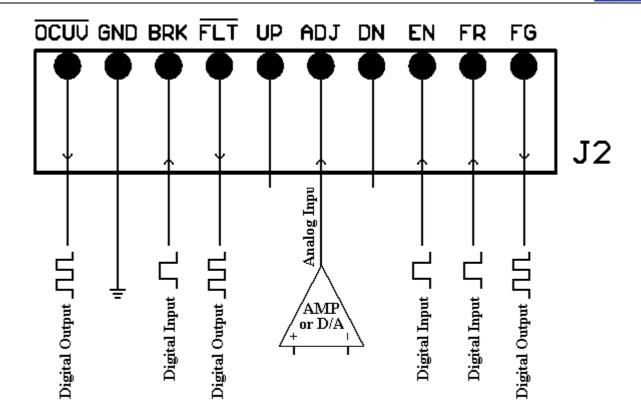
If the surface temperature of the sink is higher than 85C, cooling fan must be installed. Otherwise the driver would be damaged.


Beijing Eletechnic Ltd.



Beijing Eletechnic Ltd.

Application Circuit Examples


The Connection of BLDC Motor

The Connection of Mechanical Switches and Potentiometer Speed Control

Beijing Eletechnic Ltd.

The Connection of Digital Control and Operational Amplifier (or D/A) Speed Control

Beijing Eletechnic Ltd.

is registered trademark of Beijing Eletechnic Ltd. Eletechnic reserves the right to make changes without further notice to any products herein. Eletechnic makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Eletechnic assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. All parameters which may be provided in Eletechnic data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters must be validated for each customer application by customer's technical experts. Eletechnic does not convey any license under its patent rights nor the rights of others. Eletechnic products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Eletechnic product could create a situation where personal injury or death may occur. Should Buyer purchase or use Eletechnic products for any such unintended or unauthorized application, Buyer shall indemnify and hold Eletechnic and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Eletechnic was negligent regarding the design or manufacture of the part.

How to reach us:

Address:

Chang Ping Qu, Er Bo Zi Gong Ye Yuan, Bei Qu Zhong Lu No.7

Beijing, 102208

P. R. China

Tel: 0086-10-68422061 Fax: 0086-10-68422061

EMAIL: <u>SALES@ELETECHNIC.COM</u>

HTTP://WWW.ELETECHNIC.COM